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1. INTRODUCTION 

Structures and mechanical components during their service life are often subjected to loads varying in a quite ir-
regular and random manner, as those produced by wind, wave or road irregularities. 

When dealing with these types of loadings, we are faced with the problem of their complete statistical charac-
terisation, in terms of some quantities as the number of counted cycles, the distribution of their amplitudes and 
the total damage they cause, so to finally assess the expected fatigue life for the structure. 

Fatigue assessment procedures based on cycle counting schemes and linear damage rule are capable to predict 
damage once the load is known, for example if measured experimentally, as in the deterministic case. However, it 
must kept in mind that, since an irregular load has a random nature and all computed quantities are strictly de-
pendent on it, they are themselves random variables; for example, the set of counted cycles has to be regarded as 
a set of random variables, and the same holds for the amplitudes of counted cycles and their related computed 
damage, which is itself a random variable. From measured data we can estimate, for example, unknown parame-
ters of an amplitude distribution with hypothesised shape (e.g.Weibull distribution), e.g. [Nagode and Fajdiga 
1998]. In practice, yet, the most damaging cycles (not the most frequent) have to be considered, so statistical in-
ference about the damage distribution of counted cycles is needed [Tovo 2000]. 

In any case, in order to formulate reliable statistical considerations about the distribution of counted cycles 
and its related fatigue damage under the linear damage rule, we need many measured load histories, which are 
often costly or simply time-consuming. 

Moreover, in some applications as in the automotive industry, field measurements for a limited period of time 
serve for design purposes about the total life of the component; in this situations, there is clearly a further need to 
extrapolate measured data, making inference about rare events, as large cycles [Johannesson and Thomas 2001]. 
Consequently, sometimes experimental measurements alone cannot be viewed as reliable enough to produce sat-
isfactory results from a statistical point of view, but require further analysis. 

Then other methodologies able to reduce the time for data acquisition and analysis, and capable to guarantee 
a complete and reliable statistical description of the phenomenon under examination, are clearly welcome. 

In the so-called spectral methods, for example, the irregular fluctuating stress is modelled as a stationary 
Gaussian stochastic process, described by a spectral density in the frequency domain; specifically, the irregular 
stress is assumed to be a broad-band process. i.e. a process with a frequency content extending over a wide range 
of frequencies. The first advantage of these methods lies in the possibility, once the random load under examina-
tion has been characterised by its spectral density, to simulate numerically a large number of time histories, with-
out need to repeat different experimental measurements. The other advantage is that these spectral methods are 
also able to give exact or approximated analytical formulas that relate the fatigue damage under a given counting 
method and a given damage rule directly to the spectral density of the process. Since the rainflow count is un-
doubtedly the most accurate counting procedure, the main interest lies in the analysis of the statistical distribution 
of cycles counted by the rainflow method and in the consequent damage obtained under the linear damage rule. 
The more complete approach would be to relate the distribution of rainflow counted cycles directly to some char-
acteristics of the process spectral density, since a simple analytical formula relates the fatigue damage under the 
linear accumulation hypothesis to the distribution of counted cycles. 

The main difficulty, however, is that the complex sequential structure of cycle extraction in the rainflow algo-
rithm makes the relationship between cycle distribution and time- (or frequency-) domain characteristics of the 
process very complex, and no exact closed form solutions relating the cycle distribution to the spectral density 
are known at present for the case of broad-band processes. Some approaches has addressed this problem either 
with theoretical considerations or by setting completely approximate methods, based on best fitting procedures of 
many simulation results; interesting results have been obtained under the Markov hypothesis for the sequence of 
turning points. 

In other cases, simple results have been derived (often in approximate form) only for the rainflow damage un-
der the linear rule, with only implicit or no information about the underlying statistical cycle distribution. 



 

The first part of this paper deals with the complete characterisation of a random process both in frequency 
and time-domain, in terms of probability distributions (for the values of the process and its extremes, i.e. peaks 
and valleys) and its spectral density, with related spectral quantities (as spectral moments and bandwidth parame-
ters). 

Then, the paper faces the problem of the analysis of the distribution of counted cycles and fatigue damage by 
extending from the deterministic to the random case; then, it considers the most commonly used spectral methods 
for fatigue damage assessment under stationary Gaussian random processes, with particular attention on spectral 
densities with a broad-band frequency content (broad-band processes). 

2. RANDOM PROCESSES AND SPECTRAL DENSITY 

We assume herein that the irregular stress or strain acting in a mechanical component is modelled as a realisation 
)(tx  belonging to a stationary and ergodic random process )(tX , having a zero mean value. The process is 

uniquely characterised in time-domain by an autocorrelation function: 

 [ ])()()( ττ += tXtXERX  (1) 

where ]·[E  denotes the stochastic mean, or alternatively it is described in frequency-domain by a two-sided 

spectral density )(ωXS : 
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We shall often refer to a one-sided spectral density )(ωXW , defined on positive frequencies only: 
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Spectral density )(ωXW  is uniquely characterised by its spectral moments: 
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which represent important time-domain properties of process )(tX ; for example, the variance for process )(tX  

and its derivatives )(tXD , )(tXDD  are [Lutes and Sarkani 1997]: 
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Moreover, for a zero-mean Gaussian process )(tX , the expected rate of mean upcrossings +ν  (i.e. cross-

ings/sec of the mean value with positive slope) and the peak rate are, respectively [Lutes and Sarkani 1997]: 
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Spectral density )(ωXW  is also characterised by bandwidth parameters; the most used are: 
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which belong to a more general family of bandwidth parameters [Lutes and Sarkani 1997]: 
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Above parameters are dimensionless numbers satisfying 10 1 ≤≤α  and 10 2 ≤≤α , with 21 αα ≥ . Fur-

thermore, in a narrow-band process, having a spectral density centred on a restricted range of frequencies (see 
Figure 1(a)), 1α  and 2α  tend to unity, while for a broad-band (or wide-band) process, with a wider spectral 

density (see Figure 1(b)), they approach zero. Also a spectral parameter Xq , introduced by Vanmarcke [Van-

marcke 1972], is often used in alternative: 
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In a narrow-band process Xq  tend to zero and in a broad-band process it approaches unity. 

Other parameters can be considered, as those relative to the derivative process )(tXD  [Petrucci et al. 2000]: 

 

10               1

10                   

42

2
3

62

2
4

≤≤−=

≤≤=

XX

XX

qq
DD

DD

λλ
λ

α
λλ

λ
α

 (10) 

In analogy to Eq. (8), the following set of parameters for the derivative process )(tXD  is defined: 
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It is worth noting how spectral parameters mβ  involve higher order moments; from definition: 
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which have analogous meaning as 1α  and 2α  defined for )(tX  process. 

An important time-domain characteristic of a process is the irregularity factor, IF , defined as the ratio of the 
mean upcrossing, +ν , to the peak, pν , intensity: 



 

 
pν

ν +

=IF  (13) 

As 1α  and 2α  bandwidth parameters, also IF  ranges from zero (broad-band processes) to unity (narrow-band 

processes). For Gaussian processes, it can be shown that IF  equals 2α  [Lutes and Sarkani 1997]. 

 
 (a) 

 
 (b) 

Figure 1: Examples of (a) narrow-band and (b) broad-band process. 

We conclude with the probability density of peak in a Gaussian process, i.e. [Lutes and Sarkani 1997]: 
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which is shown in Figure 2 for different values of the 2α  parameter; its cumulative distribution is: 
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being )(−Φ  the standard normal distribution function. 



  

 
Figure 2: Probability density of peaks, )(p xp , for different values of 2α  parameter.  

The density function of valleys is symmetrical with that of peaks, )()( pv xpxp −= . For narrow-band proc-

esses ( 121 ==αα ), the peak distribution turns into a Rayleigh distribution; for processes with mean value dif-

ferent from zero, equation above can be easily updated by means of a variable shift [Lutes and Sarkani 1997]. 

3. PROPERTIES OF THE DISTRIBUTION OF COUNTED CYCLES 

Fatigue damage is related to amplitudes and mean values of stress cycles; for a variable amplitude load, a given 
counting method extracts cycles by pairing peaks and valleys in the load. The set of counted cycles obviously de-
pends on the load examined, thus, if the load represents a time history )(tx  belonging to a random process 

)(tX , it has to be regarded as a set of random variables. 
The fundamental problem of the fatigue assessment framework is to find, for a random process )(tX , the 

true distribution of counted cycles under a chosen counting method, e.g. the rainflow count. More precisely, the 
aim is to establish the correlation between the spectral density of the process and the probability density of its cy-
cles counted by the rainflow method, since fatigue damage under the linear damage rule actually depends on this 
cycle distribution. 

Thus, the distribution of rainflow counted cycles plays a fundamental role in the entire fatigue assessment 
procedure; however, the explicit correlation between this distribution and the spectral density of a random proc-
ess is not known. 

The statistical description of cycle distribution will be addressed in the following sections by the introduction 
of two alternative (but related) descriptors, namely the count intensity (introduced by [Rychlik 1993b]) and the 
joint density function, and by the definition of their general properties. 

Let )(tx , Tt ≤≤0 , a time history taken from random process )(tX . Let us suppose that a counting 

method gives a finite set of )(TN  counted cycles { }),( kk Mm∗ , where kM  and ∗
km  are the maximum and 

the minimum of each cycle, with kk Mm <∗ , and where can be for example rfc
k

mmk =
∗  for the rainflow count or 

rc
kk mm =∗  for the range (max-min) count. Let )v,(uNT  be the number of cycles counted in )(tx  such that the 

maximum kM  is higher than u  and the attached minimum ∗
km  is lower than v , i.e.: 

 { }∗∗ >≥>= kkkkT muMMmuN v:),(#)v,(  (16) 



 

where { }⋅#  is the number of elements in the set { }⋅ . Function )v,(uNT  is called the count distribution. 

Further, let )v,(uTµ  denote the expected value of )v,(uNT , and define the count intensity as: 
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assuming the limit exists (for ergodic processes the limit exists). Note that for stationary loads: 

 v),(v),( uTuT µµ =  (18) 

The expected count )v,(uTµ  can be thought as the asymptotic shape of the counting distribution )v,(uNT  
and it retains all properties of the statistical distribution of cycles counted in process )(tX . 

Note that )v,(uTµ  is an increasing function of v  and a decreasing function of u , i.e. for any fixed v≥u : 

 ( ) )v,()v,v(,),(min)v,( uuuu TTTT
+=≤ µµµµ  (19) 

Thus, the count intensity is bounded by its diagonal values. This property will be subsequently used to construct 
an upper bound for fatigue damage. 

According to previous definition, ),( uuTµ  is the number of cycles ),( kk Mm∗  such that ∗>> kk muM . 

Let us define a cycle count as a crossing-consistent method if ),( uuTµ  equals the expected number of u-
upcrossings of process )(tX , i.e.: 

 { })( ofupcrossing- a is:#),( txuttuu kkT =µ  (20) 

For simplicity of notation, write )(),( uuu TT µµ = ; for Gaussian processes, an explicit expression for the 

number of upcrossings in time T  is given by Rice's formula [Lutes and Sarkani 1997]: 
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Let us also define a counting method as a complete counting if it pairs every peak in a load with a lower or equal 
valley, so that the number of all counted cycles is equal to the total number of peaks. Note that a complete count-
ing method is also crossing-consistent [Tovo 2002]. 

Amongst usual counting methods, the range (min-max) count is both complete and crossing-consistent, the 
level-crossing is clearly crossing-consistent, whereas the peak-valley count is neither complete nor crossing-
consistent. The rainflow count needs instead some cautions, since it can be defined according to different algo-
rithms, and residuals (i.e. unclosed loops) often occur in several definitions; however, modifications can be 
adopted to count only full cycles (e.g. case of repeating histories); thus, the rainflow count is actually a complete 
method. 

We shall introduce now an alternative (and complementary) descriptor of the statistical distribution of 
counted cycles based on probability density concept.  

Let )v,(uh  be the joint distribution of cycles counted in random process )(tX , as a function of peak u  

and valley v  levels; note that ( )v,uh  is null for v<u . The related cumulative distribution function:  
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gives the probability to count a cycle with peak lower or equal to level u  and valley lower or equal to level v . 
By a simple change of variables, we can express the cycle distribution in terms of amplitudes and mean values: 

 ),(2),(ma, smsmhmsp −+=  (23) 

while the distribution of counted cycles as a function of amplitudes is given by the marginal probability density 
function: 

 ∫
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In a complete counting method, a cycle is attached to each maximum in the history, thus the expected intensity of 
counted cycles, say aν , is clearly equal to the expected intensity of peaks, i.e. pa νν = . Similarly, since due to 

completeness every peak is paired with an equal or lower valley, the marginal distribution of cycles must be also 
related to the distributions of peaks and valleys [Tovo 2002]: 
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This relation is very general and it holds for both Gaussian and non-Gaussian processes, when proper peak and 
valley distribution are considered. 

Every counting method defines its own probability density of counted cycles, )v,(uh , but, if the method is 

complete, this distribution must satisfy Eq. (25); thus, also the distribution associated to the rainflow count 
(which is a complete procedure) is a solution of the above equations. In other words, these equations stand as a 
necessary condition for the cycle distribution from any complete counting method; moreover, since the equations 
are linear, either any linear combination of two solutions will be a solution. This condition will be used in subse-
quent sections to construct a method for estimating the distribution of rainflow cycles.  

For a given counting method, both )v,(uH  and )v,(uµ  functions are two alternative cumulative distribu-
tions for the same set of counted cycles. On the basis of the definition of the )v,(uµ  function, we have that: 
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where for complete counts we can put pa νν = . 

We conclude with another important descriptor of the cycle distribution usual in engineering practice, namely 
the cumulative (or loading) cycle spectrum, defined as the percentile number of cycles having amplitudes higher 
than or equal to s , i.e.: 

 ∫
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where )(a sp  is the probability density of the amplitude of counted cycles. 



 

4. FATIGUE DAMAGE 

Knowledge of the statistical distribution of cycles counted in random process )(tX  allows one to calculate total 

fatigue damage under the Palmgren-Miner rule, once constant amplitude fatigue properties are given (as the S-N 
curve). For instance, we shall compute fatigue damage based either on the marginal amplitude distribution 

)(a sp  or on the expected count v),(uTµ . 

In time history )(tx , Tt ≤≤0 , total damage under the linear damage rule is: 
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being iD∆  the damage increment associated to each i-th counted cycle, iN  the number of cycles to failure as-

sociated to stress amplitude is , and )(TN  the number of all counted cycles. Since damage increment iD∆  de-

pends on constant amplitude fatigue properties through the S-N curve, previous formula becomes: 
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where is  is the amplitude of the i-th counted cycle and CNs k =  is the S-N curve. In a random process, is  is 

obviously a random variable, whose distribution clearly depends on process itself and on the counting method 
used (e.g. rainflow count), thus total damage )(TD  is a random variable too (precisely, damage )(tD  as a 

function of time variable t  is a non-decreasing random process, otherwise it may be more correctly defined as a 
rate-independent functional defined on )(tX ). 

It is very difficult in general to find the exact distribution of )(TD , also in the validity of linear damage ac-
cumulation hypothesis. This because, even if the probabilistic structure of process )(tX  is well defined, damage 
is a complicate non-linear functional defined on )(tX . Consequently, we shall concentrate mainly on expected 

quantities for fatigue life and damage, this one evaluated under the linear damage accumulation rule. For in-
stance, some approximations adopt a normal distribution for damage [Kececioglu et al. 1998], often under the 
Markov assumption for the sequence of extremes [Rychlik et al. 1995]; in other cases, as under non-linear dam-
age accumulation rules, more complex theoretical frameworks can be developed [Rejman and Rychlik 1993]. 

If the number of counted cycles is large, and in the hypothesis that amplitudes have same distribution and that 
dependence between them is weak (i.e. amplitudes are assumed to be independent and identically distributed), the 
expected total damage value for the process, calculated by taking expectation of Eq. (29), is [Madsen et al. 
1986]: 
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writing [ ])(TNEN =  for the expected number of cycles counted in time T ; this result is valid independent of 

the counting method.  
In stationary processes, TN aν= , where aν  is the expected intensity of counted cycles; in complete 

counts (as the rainflow method), pa νν = , where pν  uniquely depends on the spectral density of process )(tX  

(see Eq. (6)). Furthermore, in stationary processes we have that )1()( DTTD = , where )1(D  is called the 

expected damage intensity (i.e. the damage per time unit). 



  

Equation (30) establishes that the expected damage (or, equivalently, the damage intensity), is related to the 
k-th moment of the amplitude distribution, )(a sp . By neglecting mean values effect, for sake of simplicity, the 

explicit formula for calculating the expected damage intensity is: 
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In the following, we shall often write DD =)1(  for the damage intensity. 
Formula above clearly states that, for a given random process )(tX   (i.e. for a given spectral density), dam-

age intensity uniquely depends on the counting method adopted though the distribution )(a sp , or equivalently 

( )v,uh . We shall refer in particular to the rainflow counting method, which amongst all algorithms has been 

recognised as the best one [Dowling 1972]; then, distribution ( )v,RFC uh  of rainflow cycles will give the rain-

flow fatigue damage intensity under the linear rule, RFCD , through its marginal distribution )(RFC
a sp  substi-

tuted into Eq. (31). 
Evidently rainflow distribution ( )v,RFC uh  plays a fundamental role in the entire fatigue damage assessment 

procedure; unfortunately, because of the complicate sequential structure on which the rainflow method is based, 
at present no explicit analytical solution is available for ( )v,RFC uh  density, so that closed-form expressions for 

rainflow damage are not available. 
Damage )(TD  may be alternatively related to the cycle distribution properties of process )(tX  by the use 

of the counting distribution )v,(uNT , as suggested by Rychlik [Rychlik 1993b]. 
Let us consider a cycle )v,(u  having maximum and minimum at levels u  and v , respectively, and denote 

by )v,(ug  the damage it causes, according to the S-N curve, i.e. ( )kuCug v)v( 1 −=− − . In the hypothesis 

that 0)0( =g  and that ),( uuNT  is a bounded function of u , an integration by part argument shows that total 
damage )(TD , under the linear damage rule, is finite and given by [Frendhal and Rychlik 1993]: 
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This integral damage formulation links total damage to the cumulative count distribution )v,(uNT ; by replac-

ing the counting distribution )v,(uNT  by its expectation )v,(uTµ , we shall obtain the formula for the ex-

pected damage )(TD  [Rychlik 1993b], i.e.: 
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In other words, while the counting distribution )v,(uNT  defines the total damage, )(TD , the expected count 

)v,(uTµ  defines the expected damage, )(TD , and correspondingly the counting intensity )v,(uµ  will give 

the expected damage intensity, D . 
Furthermore, if ( ) 0≥′′ sg  for all amplitudes 0v ≥−= us , one can use Eq. (33) to compare damages 

from different counting procedures, based on their distribution properties. 
Let us consider in particular the range and the rainflow counts. On the basis of their algorithms, given maxi-

mum kM  of a generic counted cycle, the attached rainflow counted minimum rfc
km  is always equal or lower 

than the attached minimum counted by the range-count, rc
km ; namely, for a given maximum kM , it is always 



 

rcrfc
kk mm ≤ , being rfc

km  the rainflow minimum, and rc
km  the range-count minimum, from which it follows that 

)v,()v,( rfcrc uu TT µµ ≤ . In addition, as stated by Eq. (19), the counting distribution for a crossing-consistent 

method is always bounded by its diagonal values, thus we can write: 

 ( ))v,v(,),(min)v,()v,( rfcrc
TTTT uuuu µµµµ ≤≤  (34) 

Based on Eqs. (33) and (34), we conclude that damage using rainflow count always bounds the damage obtained 
using the range count; furthermore, an upper bound, say )(TD + , for all crossing-consistent counting methods 

exists, i.e.: 

 )()()( RFCRC TDTDTD +≤≤  (35) 

Equation above is true for a given load defined in time interval ],0[ T , and it equivalently holds for damage in-

tensities as well. We shall see later on that the upper bound coincides for Gaussian loads with the narrow-band 
approximation. 

In conclusion, we can affirm that the expected rainflow damage intensity, i.e. the main quantity to be investi-
gated, strictly depends on the distribution of rainflow counted cycles, ( )v,RFC uh . Unfortunately, because of the 

complicate sequential structure on which the rainflow method is based, at present no explicit analytical solution is 
available for the ( )v,RFC uh  density, and so for the related expected damage. 

5. ANALYTICAL SOLUTION FOR FATIGUE DAMAGE 

The main problem in the fatigue damage assessment procedure is the estimation of the expected rainflow damage 
intensity RFCD  for random process )(tX  and its related fatigue life. As evidenced by previous discussion, this 

problem can be solved by first estimating the true rainflow cycle distribution )v,(RFC uh  and then computing 

damage intensity RFCD  under the linear damage hypothesis; alternatively, direct estimation of fatigue damage is 

possible as well. 
Methods addressing this problem can be divided essentially into few categories: some of them first estimate 

the true rainflow cycle distribution (as the joint density, )v,(RFC uh , or its marginal density, )(a sp ) and then 

compute damage under the linear rule according to Eq. (31) [Dirlik 1985, Zhao and Baker 1992, Tovo 2002]; 
other methods, instead, give exact or approximate formulas for directly estimating rainflow damage RFCD , with-

out information about the underlying cycle distribution [Wirsching and Light 1980]; finally, other methods esti-
mate the rainflow damage by adopting the Markov hypothesis for the sequence of extremes [Frendhal and Rych-
lik 1993]. 

A further problem is also to establish the dependence existing between the rainflow cycle distribution (or rain-
flow damage) and some frequency-domain characteristics of process )(tX , namely its spectral density, and spe-

cifically to investigate the true set of bandwidth parameters involved in this dependence. In the next we shall give 
a brief review of methods applicable to stationary Gaussian random processes; a complete survey can be found in 
[Bouyssy et al. 1993]. 

5.1. Peak approximation 

Damage in process )(tX  can be estimated under the peak-valley counting assumption, in which each peak level 

determines the corresponding cycle amplitude; the amplitude distribution is then estimated according to the peak 
distribution and damage intensity becomes [Tovo 2002]: 
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For Gaussian processes, the peak distribution )(p sp  is given by Eq. (14) and consequently the damage intensity 

is given by two contributions: 
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Integration limits clearly consider only contribution from positive peaks. This approach has been called the peak 
approximation of fatigue damage [Lutes and Sarkani 1997]. 

It is worth noting that the peak-valley counting is not a complete procedure, in fact in calculating fatigue 
damage in broad-band loadings it completely neglects the fraction of negative peaks. In addition, as in the deter-
ministic case, the peak-valley count generally overestimates total damage (particularly for irregular loadings), be-
ing greater even than damage from the narrow-band approximation, as evidenced in [Tovo 2002]. 

On the basis of these considerations, although Lutes and Sarkani support the peak approximation [Lutes and 
Sarkani 1997], in our opinion is not useful to estimate fatigue damage through the integral deriving from the 
peak-count as reported in Eq. (37), as done in [Lu et al. 1998], since this approach has been shown to give a 
damage predictor always above the upper damage value estimated by any complete and crossing consistent 
counting method (see [Tovo 2002]). 

We note that another simple approach approximating the rainflow amplitude distribution through the peak 
distribution is proposed in literature [Kim & Kim 1994], even if it produces not satisfactory results (see [Petrucci 
and Zuccarello 1999]). 

5.2. Narrow-band approximation 

For a strictly narrow-band Gaussian process )(tX , as that depicted in Figure 1(a), it is reasonable to assume the 

amplitude distribution )(a sp  coincident with the peak distribution )(p xp , which in a narrow-band process is 

Rayleigh; furthermore, the intensity of counted cycles, aν , can be taken equal to the mean upcrossing intensity, 
+ν , given by Eq. (6). Accordingly, calculating the fatigue damage intensity as in Eq. (31), one finds: 
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where )(−Γ  is the Gamma function. Equation above is valid for a S-N curve with a single slope over the whole 

range of amplitudes; a closed-form solution including a slope change is developed in [Tunna 1986]. 
Previous expression holds exactly only for a strictly narrow-band process )(tX . When instead it is applied 

to a process )(tX  being broad-band, the predicted damage value is that of an equivalent ideal narrow-process, 

with the same variance and a number of peaks equal to the number of upcrossings (or downcrossings) of the 



 

mean level of real broad-band process )(tX . This is the so-called narrow-band (or Rayleigh) approximation of 

the fatigue damage of a broad-band process and has frequently been used in engineering applications. 
It is widely accepted the fact that the narrow-band approximation, when applied to wide-band processes, 

tends to over-estimate the rainflow fatigue damage, and that was proved rigorously by Rychlik [Rychlik 1993a].  
Hence, some authors proposed to approximate the rainflow damage intensity RFCD  by correcting (namely, by 

reducing) the damage value predicted by the narrow-band approximation [Wirsching and Light 1980]: 

 NBWLRFC DD λ=  (39) 

in which WLλ  is an empirical correction factor assumed to be dependent on the fatigue curve parameters and on 

2α  bandwidth parameter: 

 [ ]( )   1)(1)( )(
WL

kbkaka ελ −−+=  (40) 

where 2
21 αε −=  is a spectral width parameter and )(kα  and )(kb  are best fitting parameters expressed 

as: 

 323.2587.1)(;033.0926.0)( −=−= kkbkka  (41) 

The particular form was established as being reasonable on the basis of observation of the data obtained from a 
rainflow analysis of simulated samples of some broad-band processes, and it is quite simple. 

For a narrow-band process, 12 =α  ( 0=ε ), which gives correctly 1WL =λ . We note also that previous 

formula assumes the rainflow damage to be dependent on just three spectral moments (i.e. 0λ , 2λ  and 4λ ), 

through 2α  parameter. 

This approach find general application in practical problems concerning wind and wave induced random 
loadings [Siddiqui and Ahmad 2001, Holmes 2002]. 

5.3. Approximation for the rainflow amplitude distribution 

Some methods presented in literature try to directly estimate the rainflow amplitude distribution )(RFC sp , from 

which to compute fatigue damage under the linear rule according to Eq. (31). 
The crucial problem is that in general we don't know the true shape of the rainflow amplitude distribution, and 

also what set of spectral parameters actually relate this distribution to the process spectral density. Consequently, 
some kind of parametric shape must be assumed in advance and then calibrated through a best fitting procedure 
over extensive numerical simulations or experimental data. For instance, densities used are often of Rayleigh, 
Exponential or Weibull type, or some kind of mixture [Wirsching and Sheata 1977, Bouyssy et al. 1993]. 

The advantage of the knowledge of the amplitude distribution is twofold: first of all, it still allows estimation 
of fatigue damage under the linear rule by simple integration as in Eq. (31); furthermore, it allows treatment of 
rare events, as large cycles, by extrapolation of the amplitude distribution towards large amplitude values. 

5.3.1. Dirlik approximate model (1985) 

Probably the most famous empirical formula for approximating the rainflow amplitude distribution is that pro-
posed by Dirlik [Dirlik 1985], which uses a combination of an Exponential and two Rayleigh densities. 

In the Dirlik's model, the approximate closed-form expression for the probability density function of rainflow 
ranges r  is: 
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where: 
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is the normalized amplitude and: 
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are parameters resulting from a best fitting procedure over a large set of data from numerical simulations. It can 
be easily verified that 21 αα ⋅=mx  and that 8.0/1 =QD  (i.e. first coefficient in the distribution is con-

stant). 
The amplitude probability density, say )(Dir

RFC sp , follows from a simple variable transformation: 
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being as usual Z  the normalized amplitude. It should be noted that, if compared to the Wirsching and Light' 
model, this approach gives an amplitude distribution (and thus a rainflow damage) depending on just four spec-
tral moments (i.e. 0λ , 1λ , 2λ  and 4λ ), including in particular a dependence on 1λ  moment. 

The rainflow damage intensity under the Palmgren-Miner rule is calculated by substituting )(Dir
RFC sp  density 

in Eq. (31): 
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Many works have evidenced how Dirlik's formula is far superior to other existing methods in estimating rainflow 
fatigue damage [Bouyssy et al. 1993, Halfpeny 1999]. 

However, we can notice how Dirlik's method has some drawbacks. First of all, it is proposed as a completely 
approximate approach, not supported by any kind of theoretical framework; secondly, the proposed rainflow dis-
tribution does not account for mean value dependence, making so impossible a further extension to cover also 
non-Gaussian problems. 

Finally, we compute the loading spectrum as in Eq. (27): 
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which, according to the definition of parameters, satisfies 1)0( ==sF . 

5.3.2. Zhao and Baker model (1992) 

Zhao and Baker used a similar concept, by assuming that amplitude probability distribution is a linear combina-
tion of one Weibull and one Rayleigh density [Zhao and Baker 1992]: 
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where Z  is the normalised amplitude defined in Eq. (43), w  is a weighting factor ( 10 ≤≤ w ), and  a , b  are 
the Weibull parameters ( 0>a , 0>b ). Previous parameters, depending on spectral properties of process 

)(tX , are determined from simulations on a wide range of spectra, but are also supported by some theoretical 

arguments. Specifically, the weighting factor is: 
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while the other two parameters are: 
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For a narrow-band process, 12 =α , which gives 1=a , 2=b  and 0=w , implying for the amplitudes a 

Rayleigh distribution, which is the exact distribution. However, according to the definition of a  and b  parame-
ter given above, when 130.02 ≤α  it happens that 1>w , which is not correct; however, applications having 

so small values of 2α  are not so frequent in practice. 

An alternative improved version of a  parameter, which includes an additional functional relationship on 

5.1075.075.0 λλλα =  bandwidth parameter, exists. In fact, it was observed by simulations that, for small 

values of k  (e.g. 3=k ), rainflow damage is more closely correlated with other spectral properties than with 

2α  [Lutes at. al 1984]. Specifically, the correction factor NBRFC DD=λ  defined as for example in Eq. (39) 

has been correlated with 75.0α  , for 3=k , by the following formula [Zhao and Baker 1992]: 
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Then, a  is calculated as bda −= , being d  a solution of: 
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In the case of a narrow-band process, 175.0 =α , so giving 9766.0ZB =λ , which is not coincident with the ex-

act solution being expected (i.e. 1ZB =λ ); furthermore, by adopting this alternative definition, it can happen 

that 0<w  when considering particular values of 75.0α  and 2α  (e.g. 5.02 >α  and 65.075.0 <α ). 

All details for calculating all parameters can be found in [Zhao and Baker 1992]. 
The amplitude density defined in Eq. (48) depends on the normalised amplitude; by a simple variable change, 

we can express it function of amplitude s , i.e.: 

 

2

21
0

21
0

2
1

0

1

21
0

21
0

ZB
RFC )1()(














−














−−

−+







= λλ

λλλ

ssab

eswesbawsp

b

 (53) 

The rainflow damage intensity under the Palmgren-Miner rule is calculated by substituting )(ZB
RFC sp  density as 

in Eq. (31): 
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Finally, we give the loading spectrum: 
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5.3.3. Benasciutti and Tovo method (2002) 

In this section we shall analyse in detail an alternative method for estimating the rainflow cycle distribution (and 
the related fatigue damage under the linear rule) in a Gaussian broad-band processes. 

Let )(tx , Tt ≤≤0  be a time history belonging to a Gaussian random process )(tX . Now, let us rewrite 

Eq. (35) in terms of damage intensities: 

 NBRFCRC DDDD =≤≤ +  (56) 

This equation states that, under the linear damage accumulation rule, the rainflow damage always bounds the 
damage from the range-count, and that an upper damage value, +D , exists, which bounds damage computed by 
any crossing-consistent counting method (see sections 3 and 4). 

Rychlik has proved that for Gaussian processes, the upper bound coincides with the damage given by the nar-
row-band approximation, as reported in Eq. (56) [Rychlik 1993a]. Furthermore, it has been recently pointed out 
that the narrow-band damage also equals the damage calculated under the linear damage rule for the level-
crossing count [Tovo 2002]. 

Precisely, in the level-crossing count all positive peaks, reduced by the number of positive valleys at the same 
level, are paired with the lowest available valley, which is symmetric in a symmetric process, to form damaging 
cycles with non-zero amplitude. The remaining peaks and valleys at same level are paired together to form zero-
amplitude (non-damaging) cycles. This leads to the following distribution of level-crossing counted cycles as a 
function of peak and valley levels: 
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where δ  is the Dirac delta function and )(p up  and )(v up  are the peak and valley distributions, respectively. 

The component related to )v( −uδ , represents zero-amplitude cycles, has no damaging effect and may be ne-
glected in practical applications; the component related to )v( +uδ  represents instead non-zero amplitude 

(damaging) cycles. In the following, we shall use indifferently the notation )v,(LCC uh or )v,(NB uh  for indi-

cating the cycle distribution of the narrow-band approximation.  
The distribution )v,(LCC uh  as given in Eq. (57) is quite general, and it is valid for both Gaussian and non-

Gaussian symmetric loadings, if proper peak and valley distributions are used. In the case of Gaussian process, 
whose peak and valley distributions are known (see Eq. (14)), the density )v,(LCC uh  is a solution of the integral 

equation Eq. (25), confirming that the level-crossing count is a complete procedure (hence, pa νν = ).  

The joint distribution of amplitude and mean values associated to )v,(LCC uh , calculated as in Eq. (23), is: 
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and it is depicted in Figure 3(a). The marginal amplitude distribution is: 
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and it is a Rayleigh density that, substituted into Eq. (31), with pν  given by Eq. (6), gives the damage intensity 

NBD  as in Eq. (38), i.e. the narrow-band approximation. This proves that, in the case of a Gaussian process, the 

joint density )v,(LCC uh  is the expression of the distribution of both the level-crossing count and that the upper 

bound of any crossing-consistent cycle count. In fact, integration of the )v,(LCC uh  distribution as in Eq. (26) 

gives its cumulative counting intensity: 

 ( ) ( )0v)v(0v)()v,(LCC ≤++≥+= ++ uuuu II µµµ  (60) 

defined by means of an indicator function: 1)( =xI  if 0≥x , elsewhere 0)( =xI . Equation above evidently 

equals the )v,(u+µ  distribution given in Eq. (19), which also shows that the level-crossing is a crossing-

consistent count. 
For the lower bound of the rainflow damage (i.e. the range-count damage), no exact analytical expression is 

known at present, thus we can adopt the approximate result proposed in [Madsen et al. 1986]: 
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Formula above has been obtained by studying the double envelope of a random process and by approximating the 
result of the range count by means of the amplitude of the envelope process (further details on differences be-
tween this definition and the actual range-count are given in [Madsen at. al. 1986]). 
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Figure 3: Probability density distributions of counted cycles ( LCC
m a,p  representation is qualitative since Dirac delta function is 

not graphicable). 

It is noteworthy that we also know explicitly the underlying cycle distribution )v,(RC uh , which gives the 

approximate range-count damage, RCD , under the assumption of the linear damage accumulation rule. Precisely, 

let us consider the following particular joint density proposed in [Tovo 2002]: 
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The corresponding joint distribution of amplitudes and mean values, ),(RC
ma, msp , and the marginal amplitude 

distribution, )(RC
a sp , are computed by applying Eqs. (23) and (24), respectively: 
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The probability density ),(RC
ma, msp  is depicted in Figure 3(b). 

The crucial point here is that cycle distribution )v,(RC uh  gives range-counting damage RCD  under the 

Palmgren-Miner damage rule, i.e. when we substitute its related marginal amplitude distribution )(RC
a sp  into 

Eq. (31). This means that the distribution yielded by Eqs. (62)-(64) causes the same damage, as that proposed by 



 

Madsen et al. as an approximation of the range-count damage. Obviously, this does not mean that these densities 
are the cycle distribution resulting from the range-count, but it is reasonable that they do cause damage close to 
the lower bound of the rainflow counting damage. 

Further researches have shown that )v,(RC uh  density coincides with an approximate function quantifying 

the transition probability between adjacent extremes in a Gaussian process, independently proposed by Sjöström 
and Kowalewski [Sjöström 1961, Kowalewski 1966] (Kowalewski's formula can be also found in [Bishop and 
Sherrat 1990]). In other words, Sjöström-Kowalewski' joint density, )v,(RC uh , can be viewed as an approxi-

mate distribution for cycles identified by the range-count, i.e. cycles constructed by pairing adjacent local ex-
tremes (e.g. a maximum and the following minimum). Other references related to this distribution are referred to 
Butler (1961) and to Cartwright and Longuet-Higgins (1956), as indicated in [Tunna 1986]. 

At this point, several properties of the )v,(RC uh  density are of interest. First of all, the count intensity calcu-

lated according to Eq. (26), after some manipulations, yields: 
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where πλλν 202=+  is the mean upcrossing rate. It is straightforward to prove that, for v=u , previous 

expression converts into the upcrossing formula for a Gaussian process (Rice's formula), i.e.: 
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which confirms us that the counting method with )v,(RC uh  distribution is crossing-consistent. Additionally, for 

a Gaussian process, where peak and valley distribution are known (see Eq. (14)), it is possible to verify by inte-
gration that )v,(RC uh  density is a solution of Eq. (25); consequently, it represents the cycle distribution of a 

counting method which is also complete. Figure 4shows the level curves of the count intensities )v,(LCC uµ  and 

)v,(RC uµ  given in Eqs. (60) and (66) for a Gaussian process having 120 == λλ  and 44 =λ  ( 5.02 =α ). 



  

 
Figure 4: Comparison of )v,(LCC uµ  and )v,(RC uµ  count intensities for a Gaussian process with 120 == λλ  and 

44 =λ  ( 5.02 =α ). 

Secondly, careful consideration of Eq. (63) reveals that ),(RC
ma, msp  density actually represents independ-

ently distributed amplitude and mean value random variables, the former having a Rayleigh and the latter a Gaus-

sian probability density function, with variance )1( 2
20

2 αλσ −=s  and 2
20

2 αλσ =m , respectively. This can 

be condensed using the following symbolic notation: 
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where U  is a standard normal variable and R  a standard Rayleigh variable (U  independent of R ), and where 
D
=  denotes that two variables have same distribution. Note that 122 =+ ms σσ . More specifically, it can be rig-

orously proved that, in a Gaussian process, exact independence between amplitudes and mean values of range-
counted cycles would imply that amplitudes have a Rayleigh distribution and that mean values are Gaussian 
[Lindgren and Broberg 2004]. 

Some additional comments are now of interest. Systematic analysis of results from extensive numerical simu-
lations has confirmed the correctness of the hypothesis of a Gaussian density (obviously with a zero mean value) 
for the distribution of mean values of range-counted cycles. At the same time, the hypothesis of a Rayleigh distri-
bution for amplitudes has been found correct only for a restrict class of processes, namely for broad-band proc-
esses whose derivative is narrow-band ( 11 ≈β ; 12 ≈β ). In both cases, the variance of the distribution is calcu-

lated as a polynomial, depending on 1α  (or Xq ) and 2α  variables [Petrucci and Zuccarello 1999]. 

Consequently, for Gaussian broad-band processes with a narrow-band derivative, reasonably accurate fatigue 
life prediction are made assuming the hypothesis of independently distributed amplitudes and mean values (errors 
are less than 10 per cent). In the general case (e.g. for whatever broad-band process), the hypothesis of independ-
ence (on which the Sjöström-Kowalewski' density is based) leads generally to large errors [Petrucci and Zuc-
carello 1999]. 

For example, numerical simulations have shown that cycle means are almost independent of cycle amplitude 
only in a spectral density with a rectangular shape [Lindgren and Broberg 2004]. Anyway, we must always bear 



 

in mind that the independence assumption never holds for any Gaussian process with non-zero bandwidth, as 
demonstrated in [Lindgren 1970]. 

Previous discussion has evidenced that the distribution of range-counted cycle is strictly related to transition 
probability between adjacent extremes. This fact enables us for example to construct a Markov matrix after suit-
able normalisation of )v,(RC uh  density. Otherwise, the transition matrix can be estimated directly from meas-

ured or simulated data, or alternatively by numerical procedures. Two examples are mentioned here. The first re-
gards a numerical-based approach for determining the one-step transition matrix (and thus the max-min cycle dis-
tribution) proposed in [Krenk and Gluver 1989]; the interesting fact is that transition probability of small ranges 
evidences a dependence on 2β  parameter, i.e. the irregularity factor of the derivative process. The second is a 

complete numerically-based method (available in WAFO toolbox) developed for the determination of the range-
count cycle distribution; the method, although numerical, is exact in the sense that distribution becomes asymp-
totically exact when the integration grid increases [Lindgren and Broberg 2004]. 

We turn now to the evaluation of the rainflow fatigue damage. As stated by Eq. (56), the rainflow damage is 

always placed in-between previously defined bounds, namely NBD  and RCD , which for a given process (i.e. for 

a given spectral density) are fixed quantities, see Eqs. (38) and (61). 
Thus, the problem of finding the rainflow damage intensity RFCD becomes the problem of finding the proper 

intermediate point between these bounds. Precisely, we suggest adopting a linear combination: 

 RCNBRFC )1( DbDbD −+=  (68) 

in which the b  weighting factor depends on the spectral density of the process. 
On the basis of Eq. (56), we can expect that a relation similar to Eq. (68) is also true for cycle distributions; 

therefore, we can estimate the distribution of rainflow counted cycles, )v,(RFC uh  (or equivalently its related 

cumulative distributions, )v,(RFC uH  or )v,(RFC uµ ) by using an analogous linear combination. For example, 

the rainflow joint density function is estimated as: 

 )v,()1()v,()v,( RCLCCRFC uhbuhbuh −+=  (69) 

being )v,(LCC uh  and )v,(RC uh  the cycle distributions for level-crossing (i.e. the narrow-band approximation) 

and range counts, introduced in Eqs. (57) and (62). Since the distribution of range-counted cycles is computed by 
an approximate formula, the Eq. (69) holds only in a first approximation sense. In Figure 5 we show the rainflow 
joint density function, )v,(RFC uh  , calculated as in Eq. (69), for a Gaussian process having variance 12 =Xσ . 

Similarly, we can estimate the probability density of rainflow cycles as: 
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being )(LCC
a sp  and )(RC

a sp  the amplitude probability densities as given in Eqs. (59) and (64). The advantage 

of formula (69) is that it allows estimate the rainflow cycle distribution in terms of peak and valley levels, and 
this is the fundamental point for subsequent application of the method to non-Gaussian cases. 

 



  

 
Figure 5: Rainflow cycle distribution )v,(RFC uh  as a function of peak u  and valley v levels. Representation of Dirac 

delta function is qualitative. 

Based on Eq. (61), the expression in Eq. (68) can be also written as: 

 [ ] NBBTNB2RFC )1( DDbbD k λα =−+=  (71) 

in which BTλ , in analogy with Eq. (39), can be interpreted as a correction of the narrow-band approximation; 

however, the main difference here in respect to Wirsching and Light method, is that a more complete theoretical 
framework is behind the definition of BTλ  index. 

Until now, no exhaustive theoretical information concerning b  parameter and its dependence on process 
spectral density is available. However, some general b  properties can be mentioned here. In a narrow-band 

process, 12 =α  and then RFCD  equals NBD , whatever value b  may have, which seems correct. Furthermore, 

when 1=k , Eq. (68) predicts NBRFC DD = , which is true [Rychlik 1993a, Lutes at al. 1984]. Finally, Eq. (68) 

is also applicable in the case of an irregular processes having 02 =α , where it reduces to NBRFC DbD = . 

More specifically, since we don't know the exact correlation relating b  to spectral parameters, we must rely 
only on approximate formulas based on reasonable assumptions and then calibrated on numerical simulations; for 
example, the following formula [Tovo 2002]: 
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implicitly assumes that the rainflow damage depends on just four spectral moments (i.e. 0λ , 1λ , 2λ  and 4λ ) 

through 1α  and 2α  bandwidth parameters (compared to other methods, once again a further dependence on 1λ  

moment is introduced, as in Dirlik's approach). 
In the next section, based on numerically simulated results, we shall revise previous expression, giving a 

modified improved approximation still involving only 1α  and 2α  parameters. As discussed above, yet, a more 

complex dependence including other spectral parameters (as bandwidth parameters relative to the derivative 
process )(tX� ) could exists. 



 

5.3.4. Approximate method based on α0.75 bandwidth parameter 

As observed in previous sections, a possible correlation of rainflow fatigue damage on some particular bandwidth 
parameters has been investigated, and a dependence on 5.1075.075.0 λλλα =  has been suggested in [Lutes 

et al. 1984]. 
On a pure empirical basis, one can argue that the correction factor NBRFC DD=λ  is a function of 75.0α  

bandwidth parameter, and that it is independent of S-N slope k . We suggest the following simple formulation: 

 2
75.0BTNBBTRFC αλλ == DD  (73) 

This expression, even if approximate and lacking of any theoretical motivation, has been proved to agree fairly 
well with data from simulation (see later on) and can be taken as a first approximation of the rainflow damage. 

6. NUMERICAL SIMULATIONS 

The main goal of numerical simulations is to validate the accuracy of several spectral methods in estimating, in 
Gaussian broad-band processes, both the rainflow cycles distribution and the rainflow fatigue damage under the 
Palmgren-Miner law. Secondly, the aim is also to investigate the true set of spectral parameters actually defining 
the correlation existing between the spectral density and the rainflow cycle distribution. Results of this section 
will be mainly focused on the properties of b index, defined by Eq. (68).  

As discussed before, the true set of spectral moments controlling the rainflow cycle distribution is actually not 
known, and we can only rely on reasonable hypotheses based on simulations. 

The fundamental assumption here is that distribution of rainflow cycles mainly depends on 1α  and 2α  

bandwidth parameters; thus, the need of different spectral densities having the same 1α  and 2α  pair (or, alterna-

tively, different bandwidth indexes from the same spectrum geometry) is assumed as the guideline of our simula-
tions. 

Several stochastic processes were numerically simulated by assuming different shapes of the spectral density; 
namely, various one-sided spectral densities, )(ωXW  were considered, having simple geometries like that de-

picted in Figure 6, e.g. constant, linear, double symmetrical or anti-symmetric parabolic shape. 
All spectra have the same variance (i.e. 0λ  moment) and common values for 1ω  and 3ω  frequencies (see 

Table 1), whereas 2ω  can move arbitrarily inside them. For a given spectrum, and for a given 2ω  value, a well-

defined set of 1α  and 2α  bandwidth parameters is univocally established by selecting a proper ),( 21 hh  pair. 

πω 21 =  1
5

3 10 ωω =  42
0 10== Xσλ  

 
The complete set of numerical simulations focused on 2α  values of 0.1, 0.3, 0.5 and 0.7, with 1α  taking 

specified increasing values between 0.1 and 0.9. For a given couple of these two indexes, the choice of different 
spectral density shapes make possible for 1β  parameter (i.e. the irregularity factor of the derivative process 

)(tX ) to range from 0.500 to 0.950. Figure 7 gives some examples of parts of simulated processes with differ-

ent combinations of bandwidth parameters. 
In each simulation test (i.e. given a spectral density) a time history is generated in time domain and then the 

traditional time-domain analysis is performed: first, cycles are counted by means of the rainflow count, then fa-
tigue damage is computed under the linear damage accumulation law. For fatigue damage computation, we as-

Table 1: Common parameters in numerically simulated processes.



  

sume two values for the slope k of the S-N relation (i.e. 3=k  and 5=k ) and a reference strength C equal to 
unity. 
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Figure 6: Spectral densities used in numerical simulations. 

In the following, results made in time-domain (i.e. cycle distribution and fatigue damage) will be compared 
with predictions made in the frequency-domain by some spectral methods reviewed in previous sections. 

Precisely, four methods have been considered, namely the Wirsching and Light' correction formula, Eqs. 
(39)-(41), Zhao and Baker method, Eq. (54), Dirlik's empirical method, Eq. (46), and the new method described 
in the last section and synthesized in Eqs. (68) and (72). 

Although the approximate formula for b  weighting factor given in  Eq. (72) has been shown to be fairly ac-
curate [Tovo 2002], our intention is to find an improved version of that formula. In order to do this, we have to 
understand the intrinsic relationship relating b coefficient to 1α  and 2α  bandwidth parameters, therefore we 

need to express Eq. (72) as a function of quantities resulting in simulations. 

Time-domain calculation on a given simulated time history provides a fatigue damage value, say RFCD̂ , 

which can be taken as an estimate of the expected rainflow damage. Thus, inverting Eq. (68) and substituting this 
damage value gives an estimate of  b factor as: 

 
RCNB

RCRFC
ˆˆ

DD
DDb

−
−=  (74) 

being NBD  and RCD  the damage intensities calculated by Eqs. (38) and (61) which are only functions of the 

process spectral density. 

Repeating such calculation for all simulation tests (i.e. for all spectral densities) provide a set of b̂  values for 
different 1α  and 2α  pairs; all such simulation results are shown as marked points in Figure 8. 
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Figure 7: Time histories having various 1α  values and: (a) 1.02 =α ; (b) 5.02 =α . 

Since, as stated by Eq. (68), bandwidth parameters control rainflow damage through b coefficient, Figure 8 
clearly evidences a strong dependence of damage on 1α  index, even for a constant 2α  value. Consequently, we 

may presume to have to consider also 1α  index in damage estimation formulas (as suggested by Dirlik's ap-

proximate expression and the new method). In any case, the relative spread of simulated results observed in 
Figure 8 (associated to different 1β  values) cannot be completely disregarded, meaning that a slight variation on 

damage, also for constant values of 1α  and 2α  parameters, can sometimes be observed. 

Anyway, even if conscious of a possible additional relationship attributable to 1β  index, is our opinion to fo-

cus to a functional relationship still involving 1α  and 2α  parameters (as already proposed in Eq. (68)); a closed-

form of such relation is given in analytical form by the following expression: 

 
( ) ( ) ( )[ ]
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212121
app 1
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α
αααααααα αeb  (75) 

which, added in Figure 8 as a continuous line, is in fairly good agreement with all numerical results. 
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Figure 8: Comparison between b̂  values in numerical simulations and approximate analytical prediction, Eq.(3.76) 

Nevertheless, a possible dependence of rainflow damage on 75.0α  bandwidth parameter may exist. In Figure 

9 we show the correlation existing between the expression 2
75.0BT αλ =  (continuous line) and results from simu-

lations (dots). 
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Figure 9: Relationship between 75.0α  and BTλ  correction factor. The expression 2
75.0BT αλ =  (continuous line) is com-

pared with simulations (dots). S-N slope (a) 3=k  and (b) 5=k . 

As can be seen, all data are very close to the proposed expression, except for some points, independently of 
the S-N slope k . 

At this point, we can compare damage values, the b  coefficient in Eq. (68) being computed according to the 
approximate expression given in Eq. (75). 
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Figure 10: Comparison of damages for processes having different irregularity factors. Slope 3=k . (a) 1.02 =α  ;  (b) 

3.02 =α  ;  (c) 5.02 =α  ;  (d) 7.02 =α  . 

Results concerning rainflow fatigue damage from Gaussian simulation for each of the spectral densities types 
studied, having 2α  equal to 0.1, 0.3, 0.5 and 0.7, are compared in Figure 10 and Figure 11. 

In each figure, the abscissa of the data points is the expected rainflow damage intensity as estimated by a 
spectral method, and the ordinate is the damage intensity as calculated by the rainflow analysis of the simulated 
data. 

Thus, perfect correspondence between a spectral method and a simulation is indicated by data lying on the 
straight line, representing the bisector of the damage plane. Any deviations of the data from this line indicate in-
accuracies in the spectral methods. Damage values are all normalised to the fatigue strength C  and to k

Xσ , be-

ing constant for all spectral densities analysed. 
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Figure 11: Comparison of damages for processes having different irregularity factors. Slope 5=k . (a) 1.02 =α  ;  (b) 

3.02 =α  ;  (c) 5.02 =α  ;  (d) 7.02 =α  . 

Results presented in all figures evidence how Wirsching and Light' approach, even if quite simple if com-
pared to other existing methods, tends to systematically give too conservative predictions in respect to simulated 
damage. The accuracy of the prediction increases when 2α  tends to unity, i.e. when the process tends to be nar-

row-band, which seems plausible. 
On the contrary, better agreement with results from simulations seems to be associated with other spectral 

method. Namely, Dirlik's, Zhao and Baker’ and the new method show better agreement between the estimated 
rainflow damage and the damage computed from simulations, at least for slope k  equal to 3 (see Figure 10). 

For what concerns the Zhao and Baker’ technique, our calculations have evidenced that the simplest formula-
tion, using Eqs. (49) and (50), is fairly inaccurate. In addition, for all spectra having 1.02 =α  it incorrectly 

predicts a weight 1>w , which is not correct. On the contrary, the alternative improved version, Eqs. (51) and 
(52) (that is presented in all figures) show better results. 



 

For the case of a S-N slope k  equal to 5 a greater scatter amongst all results is observed (see Figure 11). In 
particular, it has to be underlined that for low values of the irregularity index 2α , the spread between the two 

bounds NBD  and RCD  of the rainflow damage defined in Eq. (56) is too high (ratio NBRC DD  is about 
1

2
−kα ), and this information is not sufficiently accurate for reliable fatigue damage assessment. 

In conclusion, we can affirm that the new method is as accurate as the Dirlik’s method, which is recognised as 
the best predictor for rainflow damage. This, on the contrary, does not hold for Wirsching and Light' correction 
formula, which has shown great inaccuracy. 

A further advantage of the new method and Dirlik's method is their capability to estimate also the rainflow 
cycle distribution; in Figure 12 we compare the expected loading spectra with a sample taken from numerical 
simulations. For the Dirlik’s method, we make use of Eq. (47), whereas for the new method we compute the load-
ing spectrum by substituting into Eq. (27) the estimated rainflow amplitude distribution )(RFC

a sp  computed by 

Eq (70), which is equivalent to directly computing the following linear combination: 

 )()1()()( RCLCCRFC sFbsFbsF −+=  (76) 

between the fatigue loading spectra relative to the level-crossing count, )(LCC sF , and the range-count, and 

)(RC sF , calculated as: 
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From Figure 12, it can be seen how simulated rainflow spectra are well predicted by both methods. However, it is 
worth noting that the new method differs significantly from Dirlik's formulation in the fact that it possesses a 
sound theoretical background, whereas Dirlik's approach has not theoretical framework. 

We conclude this section with other results, which aim to evaluate the accuracy of the approximate formula, 
Eq. (61), used for computing the expected range-count damage RCD . 
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 Figure 12: Comparison between numerical fatigue spectra and theoretical estimations (for 1.02 =α ). New 

method (left); Dirlik's model (right). 

Comparisons are made in terms or the expected damage per cycle pRC νD , which according on Eq. (61) 

only depends on the irregularity factor 2α . Therefore, for each value of the irregularity index, the theoretical 

formula predicts a constant value of the damage. 
On the other hand, it can be observed that the range-count damage resulting fro simulations depends also on 

1α , and in particular the difference between the observed and the estimated damage per cycle tends to increase 

with the difference 21 αα −=∆ . 

This confirms us that Eq. (61) is in fact an approximate formula; however, when it looses it accuracy, the b  
coefficients tends to unity, which makes the contribution of the RCD  damage in calculating the rainflow damage 

less important. 

7. CONCLUSIONS 

The rainflow cycle distribution and the fatigue damage under the linear damage rule in Gaussian broad-band ran-
dom loadings have been analysed. The theory concerning random loadings is reviewed and several analytical 
formulas are presented, as the peak approximation, the narrow-band approximation, and other methods specifi-
cally developed for broad-band random processes (e.g. Wirsching and Light’ correction formula, Dirlik's ap-
proximate rainflow amplitude density, Zhao and Baker’ method). 

Subsequently, by simple theoretical considerations we have presented the development of our new method, in 
which the rainflow damage is estimated as weighted linear combination from two damage values, each corre-
sponding to the damage from the narrow-band approximation and from the range counting method, respectively. 
An approximate function of both bandwidth parameters 1α  and 2α  (i.e. still four spectral parameters) has been 

proposed for the weighting parameter, b. 
In order to check the validity of previously reviewed estimation formulas, we have performed numerical 

simulations, comparing damage values calculated in time domain (i.e. with rainflow count and Palmgren-Miner 
law) with analytical expressions, depending on frequency-domain quantities. 
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Figure 13: Range-count damage per cycle (slope 3=k ) obtained from simulations and computed according to approximate 

formula proposed by Madsen et al. (a) 1.02 =α  ;  (b) 3.02 =α  ;  (c) 5.02 =α  ;  (d) 7.02 =α . 

First, we have considered spectral densities with simple shapes, so to get a systematic investigation of the de-
pendence between spectral bandwidth parameters and rainflow fatigue damage in wide-band random processes. 
Then, a simple model travelling on a road has been considered: in this application, the effect produced on dam-
age by varying one model parameter can be clearly evidenced. 

Our work confirms that the so-called narrow-band approximation gives in wide band processes over conser-
vative results (i.e. it estimates a damage greater that the true value); in fact it constitutes only an upper bound for 
expected rainflow damage; however, also a correction formula proposed by Wirsching and Light doesn't work 
very well. 

On the other hand, the approximate expression proposed by Dirlik gives better results, even if no theoretical 
framework is given (i.e. it represents a completely approximate formula). So, we have shown how also our 
method is able to give good estimation results, even if it should be stressed the fact that the method itself is sup-
ported in parallel by a corresponding theoretical background. In addition, we wish also to emphasise the advan-



  

tage of our method in respect to Dirlik's approach represented by the possibility to get the complete distribution 
of rainflow counted cycles in terms of amplitudes and mean values. With in minds these considerations, we are 
lead to conclude that our method seems a very promising approach in solving the rainflow damage estimation 
problem. 
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